Path Language Modeling over Knowledge Graphsfor Explainable Recommendation


Shijie Geng, Zuohui Fu, Juntao Tan, Yingqiang Ge, Gerard de Melo, Yongfeng Zhang


To facilitate human decisions with credible suggestions, personalized recommender systems should have the ability to generate corresponding explanations while making recommendations. Knowledge graphs (KG), which contain comprehensive information about users and products, are widely used to enable this. By reasoning over a KG in a node-by-node manner, existing explainable models provide a KG-grounded path for each user-recommended item. Such paths serve as an explanation and reflect the historical behavior pattern of the user. However, not all items can be reached following the connections within the constructed KG under finite hops. Hence, previous approaches are constrained by a recall bias in terms of existing connectivity of KG structures. To overcome this, we propose a novel Path Language Modeling Recommendation (PLM-Rec) framework, learning a language model over KG paths consisting of entities and edges. Through path sequence decoding, PLM-Rec unifies recommendation and explanation in a single step and fulfills them simultaneously. As a result, PLM-Rec not only captures the user behaviors but also eliminates the restriction to pre-existing KG connections, thereby alleviating the aforementioned recall bias. Moreover, the proposed technique makes it possible to conduct explainable recommendation even when the KG is sparse or possesses a large number of relations. Experiments and extensive ablation studies on three Amazon e-commerce datasets demonstrate the effectiveness and explainability of the PLM-Rec framework.

In Proceedings of the ACM Web Conference 2022
Juntao Tan
PhD candidate

My research interests are mainly on Explainable AI, Recommender System, and some other subfields of AI and Machine Learning.